<!–[if !mso]> <![endif]–><p align="center"><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">【严家祺</span></strong><strong><span style="font-size:14.0pt;line-height:115%">2018-1-3</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">博客按语】</span></strong></span></p><div align="center"><em> </em></div><em> </em><p><em><strong><span style="font-size:14.0pt;line-height:115%"> 2018</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">年第一天,收到一位艺术家、诗人朋友发给我的一篇文章《张益唐造假事件》(附件</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">1</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">),我虽然学数学物理出身,但我读後不能判断。我就请教了我的同班同学、加州大學聖地亞哥分校航空航天工程系科學家,又请教了一位已退休的前纽约城市大学城市学院(</span></strong><strong><span style="font-size:14.0pt;line-height:115%">The City College</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%"> City University of New York</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)数学教授。现在把他们两人对《张益唐造假事件》的回信摘要发表如下(附件</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">2</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">、附件</span></strong><strong><span style="font-size:14.0pt;line-height:115%">3</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">),感谢两位数学家,我对他们的科学精神深感钦佩(附件</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">4 </span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">数学对我一生的影响)。这使我想到,</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun; color: blue;">在互联网、自媒体时代,对一大类问题,存在</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%; color: blue;">“</span></strong></span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun; color: blue;">如何判断是非对错</span></strong><span><strong><span style="font-size: 12pt; line-height: 115%; color: blue;">”</span></strong></span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun; color: blue;">的大问题。一些人假借互联网颠倒黑白,使一般人无法分辨。</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">(</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">2018-1-3</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">)</span></strong></em></p><div> </div> <p><strong> </strong></p> <p align="center"><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimSun;">【附件</span></strong><strong><span style="font-size: 14pt; line-height: 115%;">1</span></strong><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimSun;">】张益唐造假事件</span></strong></span></p><div> </div><p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐是迄今为止人类科学史上唯一一个在论文没有正式发表情况下利用媒体炒作就获得奖励的恶作剧事件(数学论文由于学科本身复杂性,一般要求在正式发表数年以后进行评价,并且,几乎所有重大数学成就都是经过发现错误以后才最后正式确定)。张益唐是压垮数论的最后一根稻草。 </span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">一,起因</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%"> </span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">张益唐(英语:</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Yitang Zhang</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">1955</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">年-),美国华人数学家。上海人,祖籍浙江平湖市平湖籍数学家涉及“孪生素数猜想”张益唐于</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">2013</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">年</span></strong><strong><span style="font-size:14.0pt;line-height:115%">4</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">月</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">17</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">日向《数学年刊》(</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Annals of Mathematics</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)投稿证明存在无穷多对素数相差都小于</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">7000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">万的论文《</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">Bounded Gaps between Primes</span></strong></span><span><strong><span style="font-size:14.0pt;line-height:115%; font-family:SimSun;">》,并于同年</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">5</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">月</span></strong><strong><span style="font-size:14.0pt;line-height:115%">21</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">日被接受<strong><span style="font-size:14.0pt;line-height: 115%"><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">。</span></strong></span></strong></span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><em><br /> </em><img src="http://chinainperspective.com/EditBackyard/EditorData/Photo/2018/Jan/162018ZYT.jpg" width="180" height="101" alt="" /><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"><div><em><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">【照片】张益唐</span></strong></em></div><em> </em><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong> </span></strong><strong><span style="font-size:14.0pt;line-height:115%"> </span></strong></p><div> </div><div><span><strong><span style="font-size:14.0pt;line-height: 115%"><div><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">张益唐于</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">2013</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">年</span></strong><strong><span style="font-size:14.0pt;line-height:115%">4</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">月</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">17</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">日在《数学年刊》(</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">Annals of Mathematics</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">)投稿“证明存在无穷多个素数对相差都小于</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">7000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">万”。 </span></strong></div></span></strong></span></div><br /><span><strong><span style="font-size:14.0pt;line-height:115%"></span></strong></span><p><span><strong><span style="font-size:14.0pt;line-height:115%"> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">二,张益唐文章错误百出</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%"> </span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">数学证明中的伪证是一种虚假的证明,这种证明不是按照逻辑性规律,而是采用偷换概念或者虚假证据,故意混淆科学概念与命题的根本差别,企图蒙骗的一种形式。 </span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐的错误</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%"> 2013</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">年</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">5</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">月,有人宣称,张益唐在孪生素数猜想研究取得突破。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 人们发现张益唐证明结论使用的是一个集合概念。并且,张益唐的结论是以特称判断论述的,就不具备基本的可信度,因为所有的数学定理都是全称判断。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐公式:</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> <br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%;"><img src="file:///C:/Users/kchen/AppData/Local/Temp/msohtmlclip1/01/clip_image004.jpg" alt="http://img.back2china.com/space/album/201704/04/055305jhvpuzhumfqvph0z.png" width="239" height="29" border="0" /></span></strong></span><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> <br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 不等式左边表明一种性质,下确界是针对一组数据,极限针对函数和序列,而右边</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是说左边的素数对,好了,破绽就在这里。小于</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对是一个“集合概念”。集合概念反映的是集合体,集合体有什么不对吗?</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (一)概念的种类:</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">1</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,单独概念和普遍概念</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">a</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,单独概念反映独一无二的概念,例如,上海,孙中山,,,。它们反映的概念都是独一无二的。数学中的单独概念有“</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">e</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">”“Π”。“</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">e</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是一个超越数”就是一个主项为单独概念的命题。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">b</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,普遍概念,普遍概念反映的是一个对象以上的概念,反映的是一个“类”,这个词项的内涵由为了包含在词项外延所必须具有的事物的性质组成。例如:工人,无论“石油工人”,“钢铁工人”,还是“中国工人”,“德国工人”,它们必然地具有“工人”的基本属性。数学中的普遍概念有例如“素数”,“合数”,等。“素数有无穷多个”就是一个主项为普遍概念的命题。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">2</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,集合概念和非集合概念。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">a</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,集合概念反映的是集合体,这个词项的外延由词项所应用的事物集合组成,例如“中国工人阶级”,集合体的每一个个体不是必然具备集合体的基本属性,例如某一个“中国工人”,不是必然具有“中国工人阶级”的基本属性。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">b</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,非集合概念(省略)。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 大家明白了吗?张益唐如果要说不超过</span></strong><strong><span style="font-size:14.0pt;line-height:115%">70000000</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">的素数对具有无穷性质,必须对所有小于</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对逐一证明,就是要使用完全归纳法:</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">1</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)相差</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">2</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对(这是一个类)无穷。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">2</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)相差</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">4</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对(类)无穷。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">3</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)相差</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">6</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对(类)无穷。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><span><strong><span style="font-size:14.0pt;line-height:115%">…….<br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">35000000</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)相差</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">7000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对(类)无穷。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 张益唐没有确定相差不超过</span></strong><strong><span style="font-size:14.0pt;line-height:115%">70000000</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">的素数对都是无穷的。张益唐等于什么也没有说。顺便说一句,集合概念只是总结归纳,是不需要证明的。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (二),什么是判断?判断就是对思维对象有所断定的形式。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 判断的基本性质:</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">1</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,有所肯定或者有所否定。</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">2</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,判断有真假。</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 张益唐没有确定任何一个类是无穷或者有限,张益唐什么也没有说。就是说,张益唐的证明违背了一个判断的基本要求,就连一个明确的判断都没有。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 数学证明就是要求对数学对象给予一个明确的判断。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (三)</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 就算张益唐想说:“相差不超过</span></strong><strong><span style="font-size:14.0pt;line-height:115%">70000000</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">的素数对至少有一对是无穷的”。这个也没有做到一个定理的要求啊?张益唐是说“有些</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">A</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是</span></strong><strong><span style="font-size:14.0pt;line-height:115%">B</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">”</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">,</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">这是一种“特称判断”这样的说法不能作为数学定理,因为数学定理要求明确的“全称判断”,就是“一切</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">A</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是</span></strong><strong><span style="font-size:14.0pt;line-height:115%">B</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">”。特称判断在日常生活中使用没有问题,甚至在其它学科也没有问题,例如物理学。唯独在数学证明中特称判断无效。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (四)一个定理陈述一个给定类的所有数学元素不变的关系,适用于无限大的类,在任何时候都无区别成立。张益唐公式左边的变量部分输入一个值,得出结果是需要区别的,就不是定理了,这些结果,人们无法知道,张益唐自己也无法知道:“无穷还是有限”。或者说右边</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">以内的任何一个值对应左边是什么?是无法知道的。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (五)特称判断为什么不能作为定理?</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">因为特称判断暗含“假定存在”的非逻辑前提,数学证明是严禁使用非逻辑前提,在逻辑学也不允许引入非逻辑前提。这是我们数学中常常发现一个显然的事实却不能成为定理的困难。如果可以引入非逻辑前提,那么数学难题就不会有这么多了。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (六)数学公式是数量关系的固定模式,</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 张益唐公式具备一个错误公式的全部特征:</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 错误公式特征:</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">1</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,自称是科学的,但含糊不清,缺乏具体的度量衡。</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">2</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,无法使用操作定义</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">(</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">例如,外人也可以检验的通用变量、属于、或对象</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">)<br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">3</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,无法满足简约原则,即当众多变量出现时,无法从最简约的方式求得答案。</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">4</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,使用暧昧模糊的语言,大量使用技术术语来使得文章看起来像是科学的。</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%">5</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,缺乏边界条件:严谨的科学公式在限定范围上定义清晰,明确指出预测现象在何时何地适用,何时何地不适用。 </span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">三,关于结论的表述</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 你完成一个数学命题的证明,你应该怎么样陈述才能清晰无误呢?有什么规定吗?数学定理的陈述必须严格按照语法</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (一),怎样陈述</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 对科学(数学)结论陈述,有着明确的要求,就是应该严格按照语法要求,清晰地无歧义地陈述。按照汉语习惯,主项在前,谓项在后。主项和谓项不得分拆成为几个部分。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 例如:</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> “素数有无穷多个”(</span></strong><strong><span style="font-size:14.0pt;line-height:115%">A</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">具有性质</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">B</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,素数是主项,无穷多个是谓项,一切</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">A</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是</span></strong><strong><span style="font-size:14.0pt;line-height:115%">B</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,全称判断主项周延,肯定判断谓项不周延)</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> (二)</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 看看张益唐怎么样陈述:“存在无穷多个素数对,相差不超过</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">”。</span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 主项是小于</span></strong><strong><span style="font-size:14.0pt;line-height:115%">70000000</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">素数对,谓项是无穷多。正确的方式应该说:”小于</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的素数对有无穷多“。但是,作者没有证明这个命题,不敢说那一对是无穷的,只能颠倒次序,把主语非法(语法)分拆两个部分,一部分(素数对)放在前面,一部分放在后面(小于</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">70000000</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的)。并且把谓项放在前面,,,这个就叫做语无伦次。是违法语法规则的。表明作者思维矛盾无法通过正确的语言表达。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 语言的清晰表明思想的清晰,思想的清晰必然要通过清晰的语言完成。 </span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> </span></strong><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">四,小节</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;"> 浪漫情怀不能代替严肃的证明,迷信和伪科学让人们不动脑筋就可以欢欣鼓舞,迷信迎合人们懒得思考的需求。而科学是在逐一消除错误的基础之上发展起来的。张益唐的错误工作被否定,私人感情当然受到伤害,但是这种否证公认为科学的核心。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">五,学术界要抵制炒作</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">数学规则危机是指数学信任危机,数学家论文的确定不是通过逻辑和科学共同体的审查,而是通过媒体炒作骗取成功。</span></strong><strong> </strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">最重要的炒作例子</span></strong><strong> </strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">自从</span></strong><strong><span style="font-size:14.0pt;line-height:115%">1920</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">年开始,数学界居然对一个集合概念的命题进行了持久的证明,从</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">v-</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">布朗,到陈景润,张益唐,无一不是进行无效劳动。这种击鼓传花式的游戏,最后一棒烂在谁手里,一方面说明名题之争空前激烈,一方面说明对问题没有找到有效方法。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">安德鲁怀尔兹,陈景润,张益唐都是利用数学界的潜规则:先通过圈内人吹捧,再利用媒体。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">但是,我们知道,陈景润的幕后操盘手是王元,借助闵嗣鹤的招牌,利用人民日报。</span></strong><strong> </strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐的幕后操盘手是伊万额克</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">(henryk.Iwaniec)</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">波兰裔美国人,他借助美国数学年刊,利用自然杂志。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">炒作本质</span></strong><strong> </strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">他们都是企图绕过逻辑学和科学共同体,搞黑箱操作,转向媒体寻求支持,狎(挟)民气以胁迫学术规则,如此犯上作乱,成为严谨科学的公敌。</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">陈景润和张益唐都是以超高的人气形成了对学术规则的破坏和威胁。</span></strong><strong> </strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">特别是张益唐的行为已经突破了学术规则的文明底线,数学家必须快刀斩乱麻的方式摆脱错误的干扰,竖立正统的学术权威。</span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%"><br /> </span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐的炒作如此周密,必有绝世高手操盘,以张益唐书呆子般的个性,不可能有如此功力。</span></strong><strong> </strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是谁施展无人可及的手段,运筹谋划,居功至伟?</span></strong><strong> </strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">从现在看,中国,美国都是大赢家,从长远看,是数学界的灾难。解析数论土崩瓦解,中国美国操纵媒体,伪造证据,栽脏嫁祸,虽然短暂成功,但是手段阴狠,为科学界所不齿。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;"><br /> </span></strong></span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">【附件</span></strong><span><strong><span style="font-size: 12pt; line-height: 115%;">2</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">】加州大學聖地亞哥分校航空航天工程系科學家</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%;">2018-1-1</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">回信</span></strong></span></p> <p><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">这人</span></strong><strong><span style="font-size: 12pt; line-height: 115%;">…… </span></strong><span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">一窍不通。张(益唐)是说,那种距离小于七千万的相邻两个素数的素数对有无穷多</span></strong></span><strong> </strong><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">现在七千万已经被改进到几百了。改进到二,</span></strong><strong> </strong><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">素数对猜想就证明了。</span></strong></p> <p><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">【附件</span></strong><strong><span style="font-size: 12pt; line-height: 115%;">3</span></strong><span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">】已退休前纽约城市大学城市学院(</span></strong></span><strong><span style="font-size: 12pt; line-height: 115%;">The City College</span></strong><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">,</span></strong><span><strong><span style="font-size: 12pt; line-height: 115%;"> City University of New York</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">)数学教授</span></strong></span><span><strong><span style="font-size: 12pt; line-height: 115%;">2018-1-2</span></strong></span><strong><span style="font-size: 12pt; line-height: 115%; font-family: SimSun;">的回信</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">收到读数学朋友们关于张益唐一事的回复电邮,他们的意见也和我一样,觉得这是一篇恶意攻击张的文章。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">张益唐</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">2013</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">发表的研究结果,部分地解决了一个困扰素数论颇久的猜想:</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes Conjecture</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">一对相继出现的素数叫</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">如果它们相减的绝对值是</span></strong><strong><span style="font-size:14.0pt;line-height:115%">2</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">。例如</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">3</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">和</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">5</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">5</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">和</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">7</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">11</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">和</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">13</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">。</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">23</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">和</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">29</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是一对相继出现的素数,但不是</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,因为它们相减的绝对值是</span></strong><strong><span style="font-size:14.0pt;line-height:115%">6</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">而不是</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">2</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">。</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes Conjecture</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">说:有无限多对</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">存在。这个猜想,直到现在还没有完全解决。</span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%"> 2013</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">年,张益唐是一位在</span></strong><strong><span style="font-size:14.0pt;line-height:115%">University of New Hampshire</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">数学系完全没有名气的讲师。张在工作之余研究下面一个比</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes Conjecture</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">更广泛的命题:</span></strong></p> <p><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">如果</span></strong></span><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">n</span></strong></span><strong> </strong><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">是一个任意的自然数,</span></strong></span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">P(n)</span></strong><strong> </strong><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">代表集合</span></strong></span></p> <p><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">{(x, y):</span></strong></span><strong> </strong><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">x</span></strong><strong> </strong><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">和</span></strong></span><strong> </strong><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">y是素数而且x–y的绝对值是n}</span></strong></span></p> <p><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">则</span></strong></span><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">P(n)</span></strong></span><strong> </strong><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: blue;">是个无限集。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">显然,若</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">n = 2</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">时,就证明了</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes Conjecture</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">。张研究得到的结果是:</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">最少可以找到一个小于</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">70,000,000</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的偶数</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%"> k</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">,使得</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">P(k) </span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">是个无限集。</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%">There exists at least one even integer <em>k</em> < 70,000,000 such that <em>P</em>(<em>k</em>) is infinite.</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">但张并未能证明</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">k</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">可以是</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">2</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">。所以</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Twin Primes Conjecture</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">还是没有完全解决。近年来不少人在张文基础上作了改进,正如你回信的同学说:</span></strong><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">现在七千万已经被改进到几百了。</span></strong><strong><span style="font-size:14.0pt;line-height:115%">”</span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%"> </span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐把论文投到</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Annuals of Mathematics</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">。</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">Annuals</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">是世界数学界最有声望的期刊,门槛极高,要文章在此发表,谈何容易!说它给人收买做新闻炒作,更是天方夜谭。</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">张解决的是著名的难题,而且张的论述,条理清晰,逻辑紧密,吸引了编辑和审核者的注意。数周后,参与审核的数学家回信给编辑说:</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%">The main results are of the first rank. The author has succeeded to prove a landmark theorem in the distribution of prime numbers. Although we studied the arguments very thoroughly, we found it very difficult to spot even the smallest slip. . . . We are very happy to strongly recommend acceptance of the paper for publication in the Annals.</span></strong></span></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">主要的结果属第一流。作者成功地证明一条素数分布的里程碑定理。虽然我们细心严格地检核每一个论证,也极难找到一点点小的毛病。我们强烈推荐</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Annuals</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">接纳并刊登此文。(见</span></strong><strong><span style="font-size:14.0pt;line-height:115%">2015</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">年</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">2</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">月的</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">New Yorker</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">)</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">这些数学专家的推荐和〈张益唐造假事件〉一文所说:</span></strong></span><span><strong><span style="font-size:14.0pt;line-height: 115%">“</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐文章错误百出</span></strong><strong><span style="font-size:14.0pt;line-height:115%">”</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,相去何远?</span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">每年</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Annuals</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">收到的论文,数以千百计。被接受的文章,等候排期也常常要一年半年。因为张的结果属</span></strong><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">里程碑</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">”</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">性,</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">Annuals</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">以最快的速度刊登张的论文。</span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%">Annuals</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">未出版张文前,张的</span></strong><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">里程碑定理</span></strong><strong><span style="font-size:14.0pt;line-height:115%">”</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">就在数学界流传。不久,哈佛大学数学系邀请张前往讲演。(见</span></strong><strong><span style="font-size:14.0pt;line-height:115%">2015</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">年</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">2</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">月的</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">New Yorker</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">)</span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%">UCLA</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">(洛杉磯加大)数学教授陶哲轩(</span></strong><strong><span style="font-size:14.0pt;line-height:115%">Terry Tao</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">)</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">,</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">是称为</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">数学诺贝尔奖</span></strong><strong><span style="font-size:14.0pt;line-height:115%">”Fields Medal</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">的得奖人,也是数论的大师级人物。</span></strong><strong><span style="font-size:14.0pt;line-height:115%">2013-06-04</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,陶在他自己的网站开了一个讨论张文的<span>研讨班。参看</span></span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%">https://terrytao.wordpress.com/2013/06/04/online-reading-seminar-for-zhangs-bounded-gaps-between-primes/</span></strong></p> <p><strong> </strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%"> </span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">你的同学说写〈张益唐造假事件〉的人</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">一窍不通</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">”</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">,真是一击中的。此人只从张益唐论文开始的<span>摘要(</span></span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%">abstract</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">)抄了一个不等式</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;"><img src="file:///C:/Users/kchen/AppData/Local/Temp/msohtmlclip1/01/clip_image005.jpg" alt="http://img.back2china.com/space/album/201704/04/055305jhvpuzhumfqvph0z.png" width="239" height="29" border="0" /></span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimSun;">连张益唐要证明的是什么还弄不清楚,就开始大作文章,说些全是和张的论文无关的什么</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">概念</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%">”</span></strong></span><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimSun;">。全文错误百出,逻辑混乱。例如第一段的最后一句</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%">“</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">张益唐是压垮数论的最后一根稻草。</span></strong><strong><span style="font-size:14.0pt;line-height:115%">”</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimSun;">更是不知所云,数论如何能被压垮!。</span></strong></p> <p><strong> </strong></p> <table style="border-collapse:collapse;border:none;" cellspacing="0" cellpadding="0" border="1"> <tbody><tr> <td style="width:6.15in;border:solid windowtext 1.0pt;padding:0in 5.4pt 0in 5.4pt" width="590" valign="top"> <p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><em><strong><span style="font-size:14.0pt">2018-1-3</span></strong><strong><span style="font-size:14.0pt;font-family:SimSun;">回信</span></strong></em></p><em> </em><p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><em><strong><span style="font-size:14.0pt">xx</span></strong><span><strong><span style="font-size:14.0pt; font-family:SimSun;">兄:</span></strong></span></em></p><em> </em><p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><em><strong><span style="font-size:14.0pt"><span> </span></span></strong><span><strong><span style="font-size:14.0pt; font-family:SimSun;">读了你的信,知道你的境界高于我,你维护科学的尊严,不留名,我却在博客上追求“点击率”。你是数学家,我只是保持着对数学和真理的敬畏。在博客上发表也有好处,你为“科学的尊严”做出的努力,会很快传遍中文世界。家祺</span></strong></span><strong><span style="font-size:14.0pt">2018-1-3</span></strong></em></p><em> </em><p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><em><strong> </strong></em></p><em> </em><p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><em><strong><span style="font-size:14.0pt;font-family:SimSun;">过一会儿,你就可以在博客</span></strong><a href="http://blog.boxun.com/hero/yanjiaqi99" target="_blank"><strong><span style="font-size:14.0pt">http://blog.boxun.com/hero/yanjiaqi99</span></strong></a></em></p><em> </em><p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><em><strong><span style="font-size:14.0pt;font-family:SimSun;">上找到你的信件。</span></strong></em></p> <p style="margin-bottom:0in;margin-bottom:.0001pt;line-height: normal"><strong> </strong></p> </td> </tr> </tbody></table> <p><strong> </strong></p> <p align="center"><span><strong><span style="font-size:36.0pt;line-height:115%;font-family:SimHei; color:#0202BE"> </span><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #0202be;">附件4:</span></strong></span></p> <p align="center"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #0202be;"> 数学对我一生的影响</span></strong></span></p> <p align="center"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #0202be;"> ——兼谈数学的五大特征</span></strong></span></p> <p align="center"><span><strong><span style="font-size:10.0pt;line-height:115%;font-family:SimHei; color:#0202BE"><span> </span></span><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #0202be;">《佛州大众报》2012-2-9</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"> <span> 严家祺</span></span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span> 三年前,我们五十年前同时进入大学数学系的同学,除了很少几个人外,几乎都从各地赶到北京中关村参加聚会了。我当时住在纽约,加上某一原因,没有能参加聚会。为此,写了一篇短文《数学对我一生的影响》发给同学。</span></span></strong></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">当时数学系在学校中是</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">11<span>系,我们都是一九五九年入学的学生,所以称为“5911班”。我们系的全称是“应用数学和电子计算机技术系”。当时学校里有一台电子计算机,有几间房子大,进入“机房”要像医生一样穿“白大褂”。我学的专业是“数学物理”,下面还分“专门组”,我选择的是“基本粒子专门组”。</span></span></strong></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:28.0pt;line-height: 115%;font-family:SimHei;color:#1D02BE"> </span><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #1d02be;">大学留下的印象</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">大学时</span><span style="font-size: 14pt; line-height: 115%; font-family: SimHei;">代离今天已有半个世纪了,许多事都忘记了。但还记得几件事。一是“吃饭”,一九五九年的北京,在大学的食堂中是不限量随便吃的,我们饭量都很大,许多人一餐要吃五个大馒头。到一九六</span></strong></span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei;">0<span style="font-size: 14pt;">年初,全国开始进入饥荒,我们也开始“定量”吃饭。</span></span></strong></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei;">六十年代初的“困难时期”,我们学校里,政治上十分“宽松”,经常看外国电影,许多同学都唱外国名歌,我就是在那时学会唱《美丽的梭罗河》、《莫斯科郊外的晚上》的。每到每月一日,我们宿舍的</span><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">同学一起到商店,凭“糖果票”可以买到半斤糖,因为饥饿,大多数同学都在一天中吃完半斤糖。不过,我们学校里学习风气非常浓,阅览室有许多公共图书,大家都去抢座位,几乎没有空位置。我在阅览室里,就把一本《数学习题集》的上千道题都做了一遍。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">在那样的环境中,我对政治不感兴趣。在大礼堂听政治方面报告,想的还是数学问题。唯一留下的印象是,我们的校长郭沫若访问缅甸印尼回来,对我们学生讲话时,创作了一首诗:“印尼三千岛,缅甸百万塔,倒倒倒倒倒,塌塌塌塌塌。”我这才知道原来缅甸有许许多多宝塔。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:28.0pt;line-height: 115%;font-family:SimHei;color:#1D02BE"> </span><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #1d02be;">从自然科学转向社会科学</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">我所在的“基本粒子专门组”只有十多个学生。张宗燧教授教我们热力学、统计力学、电动力学、相对论和量子场论。使我惊奇的是,学了一个学期的热力学,到五年级时,到张宗燧教授的“油印讲义”中,用两页纸的数学公式就讲得清清楚楚、明明白白。爱因斯坦的“相对论”,经张宗燧用几个数学公式一讲,简单明白,五十年後的今天,我都可以正确地讲清楚“相对论”的基本原理。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">除了张宗燧教授外,我还深受关肇直教授的影响。关肇直教过我们“</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">5911<span style="font-size: 14pt;">班”所有同学“高等数学”,我还跟关肇直学过“泛函分析”等课程。关肇直教授兢兢业业教我们多年,我们每一位同学都留下了终生难忘的印象。不过,关肇直与张宗燧不同,讲数学,经常联系讲恩格斯的《自然辩证法》。</span></span></strong></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">从一九六三年下半年开始,随着“大饥荒”大过去,我们吃得好些了,也不感到饥饿了,这时,学校里政治上“宽松”的时期就告结束。当时经常要我们学习“反苏联修正主义”的文章,我觉得被批评的“修正主义”中有许多东西是正确的。更重要的是,从进大学一天开始,我接受的“科学”训练,使我知道,科学最基本的精神就是“修正主义”。当旧的科学理论不能解释新发现的事实时,科学家要做到只有一件事,就是修正旧理论,提出新的“假说”。从牛顿力学到“相对论”就是这样发展起来的。</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 我当时对中国许多事情想不通,我相信,科学可以作出正确的解释。但这个“科学”不是数学物理,而是社会科学。一九六四年五月,我们数学系的同学,只有我一人选择考“哲学社会科学”的“研究生”。大学毕业後,同学们分配到中国科学院的数学所、原子能所等研究所,我到了中国科学院哲学研究所当“研究生”。张宗燧教授对我放弃“基本粒子物理”而投身“哲学”,感到十分遗憾。张宗燧是张东荪的儿子,“文化大革命”中自杀了。</span></span></strong></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 我在同学们二00九年聚会的信件《数学对我一生的影响》中说:“我回顾自己一生,感到与关肇直老师的影响密不可分。在中国和世界科学园区,关肇直是一棵大树。我们5911班的同学是这棵大树上的分枝。5911班的同学,五十年来,在数学、系统科学、计算技术、高能物理、生物物理等领域的研究和教学中作出了许多杰出的成就,成为关肇直大树上的又大又强的枝杆,我却只是关肇直大树上一枝细弱的社会科学‘分枝’。关肇直老师在科大的教学中,用主要精力讲授数学及其在物理等学科上的应用,而用一些时间谈数学的‘辩证法’。在关肇直老师的影响下,一九六三年十一月,我在《数学通报》上发表了我一生的第一篇文章《谈谈“二阶图形”的辩证法》。这是一篇在“哲学”上“宣扬”“世界没有鸿沟”的文章。正是这篇文章,把我从数学、自然科学引入了当时属于科学院的哲学研究所,成了“自然辩证法”的“研究生”。到哲学所後,我发现,我的‘世界没有鸿沟’的思想,与当时‘一分为二’的‘毛泽东思想’格格不入。我在一九六四年《人民日报》上写了一篇《自然的东西和人造的东西》,仍然宣扬‘两种东西’——‘自然的东西’与‘人造的东西’找不出‘鸿沟’。在当时强调‘阶级斗争’、下乡‘四清’的环境中,我感到再写那种‘没有鸿沟’的文章肯定对我没有好处。我深深感到,大学学生时代的‘科学环境’与哲学所的‘学术环境’迥然不同。”当时,我读到一篇波兰科学家英费尔德《哲学的黄昏》的文章。英费尔德与爱因斯坦合写过一本《科学的进化》的书。英费尔德说“领悟一个出色的数学公式”会得到与“听巴哈的乐曲”一样的“感情”。而哲学家关于“世界”和“原子”的说法,让人产生“似是而非的迷醉”,“实质上都是廉价的、哄人的东西。”</span></span></strong> <span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">张宗燧作为杰出科学家那么蔑视哲学的态度,我始终认为是正确的。哲学不是科学,哲学家的学说,几乎都是似是而非、模棱两可的哄人的东西。</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 在大学的五年中,关肇直、张宗燧的教导使我终生难忘。五十年来,我在社会科学的研究中,始终保持着从大学时代形成的科学精神。正是这种科学精神,当我想到英费尔德对哲学中“似是而非”的“嘲笑”时,使我在哲学研究所十八年中,没有敢写出一篇“自然辩证法”的文章。在“文革”後期,科学出版社出版了主要是我写的、与哲学无关的《能源》一书,为一九七九年“全国科学大会”的《现代科学技术简介》写了《探索和开发新能源》一章。一九七八年发表了《人类物质文明的三大根源——材料</span></span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:MingLiU;">•</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei;">能源</span></strong><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:MingLiU;">•</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei;">信息》长篇文章。我怀着用“科学精神探讨政治”的决心和目标,</span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"> 一九八二年人民出版社出版了我写的《国家政体》一书。</span></strong></p> <p style="text-indent:.45in"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">我放弃数学物理专业而到哲学所当“研究生”的目的,是为了用科学精神研究和了解中国政治,但当时没有“政治学”这一学科,毛泽东时期中国大陆的大学里都取消了“政治学”学科。一九八</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">0<span style="font-size: 14pt;">年後不久,我开始参加中国社会科学院政治学研究所的筹建工作,担任了政治学研究所第一任所长,我心里的目的,就是希望通过研究政治科学,找到革除中国政治制度的弊端的道路。</span></span></strong></p> <p style="text-indent:.45in"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">一九八六年九月到一九八七年十一月,我被“借调”到赵紫阳总理的“中央政治改革办公室”工作,参加中国政治改革的研究</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">(<span style="font-size: 14pt;">图1)。中国共产党“十三大”後,赵紫阳不太情愿地担任了总书记职务,我“借调”结束,回到政治学所,第二年到美国密西根大学当“访问学者”,在华盛顿受到了里根总统接见。</span></span></strong></p> <p style="text-indent:.45in"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei"> <img src="/EditBackyard/EditorData/Photo/2018/Jan/162018Y1.jpg" alt="" width="647" height="517" /><br /></span></strong></span></p> <p style="text-indent:.45in"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei;"> <em> (图1) 1987年11月7日赵紫阳总理在中南海与严家祺等人谈话</em></span></strong></span></p><em> </em><p style="text-indent:.45in"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei;"><em> </em><img src="file:///C:/Users/kchen/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg" alt="" width="330" height="230" border="0" /><img src="/EditBackyard/EditorData/Photo/2018/Jan/162018Y2.jpg" alt="" width="658" height="457" /> (图2) <em>1988年2月4日,里根总统在华盛顿希尔顿饭店接见严家祺(左1)等人</em></span></strong></span></p><div><em> </em></div><em> </em><p style="text-indent:.45in" align="center"><span><strong><span style="font-size:28.0pt;line-height: 115%;font-family:SimHei;color:#1D02BE"><span> </span></span><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #1d02be;">数学的五大特征</span></strong></span></p><div align="center"> </div> <p style="text-indent:.45in"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">我虽然没有把数学作为我的“研究领域”,但数学对我有终生影响,直到今天仍然影响着我的生活。在我看来,数学有五大特征:</span></strong></span></p> <p style="margin-left:67.45pt;text-indent:-.5in;"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei;"><span style="font-size: 14pt;">第一,<span style="font:7.0pt "Times New Roman""> </span></span></span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">数学真理没有时间性,数学中的“时间”与我们个人的“时间”、与人类社会中的“时间”不同,数学对动态过程的描述,是可以无限重覆的,而我没有参加同学们五十周年聚会,永远就成为“不可改变的历史”。</span></strong></span></p> <p style="margin-left:67.45pt;text-indent:-.5in;"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei;"><span style="font-size: 14pt;">第二,<span style="font:7.0pt "Times New Roman""> </span></span></span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">数学“主义”是“完美主义”。自然界中“球形”的东西,如太阳、地球、月球都不是绝对的“球形”,而只有数学中的“球”是完美的。</span></strong></span></p> <p style="margin-left:67.45pt;text-indent:-.5in;"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei;"><span style="font-size: 14pt;">第三,<span style="font:7.0pt "Times New Roman""> </span></span></span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">数学“主义”是“应该主义”。自然界的一切事物、现象总是以本来面目出现的,没有“应该”、“不应该”的问题,数学提供了一种“规范”,让人类制造的物品、人类的道德和行为、人类社会的制度,有了“应该”、“不应该”的问题。数学可以帮助人去发现、寻找“规范”。</span></strong></span></p> <p style="margin-left:67.45pt;text-indent:-.5in;"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei;"><span style="font-size: 14pt;">第四,<span style="font:7.0pt "Times New Roman""> </span></span></span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">数学“主义”是“简化主义”。数学的发现能把以往复杂、困难的问题一一程序化、模式化、简化。可以预见,在不远的将来,自然界中各种“花朵的开放”都可以用一个个“超微分方程”一一显现出来,分子生物学、“化学文库技术”、“生物文库技术”、系统生物学、都将“数学化”,“每一种新材料、每一种新药物、每一种人造物种的设计”,不过是解一个个数学问题而已。</span></strong></span></p> <p style="margin-left:67.45pt;text-indent:-.5in;"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei;"><span style="font-size: 14pt;">第五,<span style="font:7.0pt "Times New Roman""> </span></span></span></strong><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">数学是想象力之源。人类超越动物最重要之点是人类有“无限的想象力”,大科学家、大艺术家、大发明家、大文豪都是想象力远远超过普通人的人,维克多·雨果的《巴黎圣母院》是他看到巴黎圣母院墙上的“刻痕”,想象出来的。没有想象力的人只能成为平庸的人物,大政治家是把他的想象力与现实环境作最优结合的人。</span></strong></span></p><div> </div> <p align="center"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #0202be;"> 数学是探索“规范世界”的工具</span></strong></span></p><div> </div> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 我们生活在“现实世界”中,自然界和人类社会</span></span></strong></p> <p><span><strong><span style="font-size:14.0pt;line-height:115%;font-family: SimHei">都是“现实世界”。科学、宗教观念、想象、梦幻、电脑中的虚拟世界都属于“观念世界”。在这两个世界外,还有一个“规范世界”。数学就是让我们发现、了解“规范世界”的钥匙。</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 严格来说,数学不能归于自然科学,正像哲学不属于社会科学。科学的目标是为了发现自然界和人类社会中的真理,而数学是为了发现“规范世界”中的真理。举例来说,“圆周率”3.14159265……,是一个无理数,它在“小数点”後的每一位数都是一定的,不是随意的,但现在用电脑还只能计算到“小数点”後的几亿亿亿位,对“圆周率”</span></span></strong> <span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei">3.14159265……“小数点”後“会不会出现连续一千个9”这样的问题,至今没有人能够回答。“圆周率”的无限精确值既不存在在“现实世界”中,也不存在在“观念世界”中,而存在在“规范世界”中。</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 我们发现一种新元素、一颗新的星球、一种新的物种,都是在“现实世界”中的发现。而“现实世界”中所没有的“存在”,如一种“新药结构”、一种新的建筑或电脑设计、一种自然界中从未有过的新“物种”、一种新的金融制度,这就需要到“规范世界”中去寻找。“规范世界”中的“存在”是无限的,这需要我们去不断探索。数学就是探索“规范世界”的工具。</span></span></strong></p> <p style="text-indent:.4in"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">在巴黎和纽约期间,我用这种探索“规范世界”的精神写了多本著作,如《联邦中国构想》(</span></strong></span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei">1992<span style="font-size: 14pt;">年,明报出版社)、《霸权论》(2006年香港星克尔出版社)、《普遍进化论》(2009年纽约明镜出版社)。</span></span></strong><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei"> </span></strong></span></p><div> </div><div><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei"><img src="http://chinainperspective.com/EditBackyard/EditorData/Photo/2018/Jan/162018Y3.jpg" width="347" height="521" alt="" /></span></strong> <img src="/EditBackyard/EditorData/Photo/2018/Jan/162018Y4.jpg" alt="" width="347" height="424" /></div><p style="text-indent:.4in"><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei;"> <em>(图3) 《霸权论》、《普遍进化论》二书封面</em></span></strong></span></p><div><em> </em></div> <p align="center"><span><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei; color:#0202BE"> </span></strong></span><span><strong><span style="font-size: 14pt; line-height: 115%; font-family: SimHei; color: #0202be;">数学“理想主义”的作用和局限</span></strong></span></p> <p><strong><span style="font-size:14.0pt;line-height:115%;font-family:SimHei"><span style="font-size: 14pt;"> 把数学精神运用到人类社会生活中,数学的“完美主义”和“应该主义”就成了“理想主义”、“乌托邦主义”。看一看世界各地的山河景色、看一看形形色色的动物植物、看一看辽阔浩瀚的宇宙星空,自然界的一切都是“自然”的、美好的。但自从地球上有了人类後,人类既创造了光辉灿烂的文明,也滋生了无数丑陋和罪恶。</span></span></strong></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">人类社会中的最大罪恶是并不是人性中的“恶”,而是一种社会制度容许、纵容人性中的“恶”,希特勒、斯大林、毛泽东、卡扎菲、金正日就是这种“恶”的代表。现代社会的“制度性的金融欺诈”、马多夫之类的金融家也是“恶”的典型。人类社会中如果没有“理想”、没有对“理想”的追求、没有“理想主义”,人类社会就不会进步。但改造社会不同于创造发明一种新产品,社会中的传统习惯往往与制度中的“恶”交缠着一起,当少数人把一种“社会理想”强加于人时,往往会发生冲突甚至战争。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">当少数人设计的“社会理想”是不可行的时候,这种“理想主义”就成了“乌托邦主义”。用暴力来改造社会、建设“乌托邦世界”,就会给人类带来灾难。从一九一七年俄国十月革命开始,这种凭借暴力的“乌托邦革命”给俄国、东欧、中国、朝鲜、越南、柬埔寨等国带来了巨大灾难。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">然而,一个社会没有理想、没有远景,这个社会就不能进步。“理想”是人类社会的“突变基因”,而这个“理想”不能在数学中寻找,而应当用“数学精神”在现实的社会中寻找。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt; line-height:115%;font-family:SimHei">中国和全世界都需要这种“理想主义”精神,去扫除形形色色的腐败、黑暗现象和改变坏的制度。</span></strong></span></p> <p style="text-indent:33.0pt"><span><strong><span style="font-size:14.0pt;line-height: 115%;font-family:SimHei"> <em> (写于 2011-12-20 于Florida )</em></span></strong></span></p><em> </em><p><em><strong> </strong></em></p> <p><strong> </strong></p> <p><strong> </strong></p>